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ABSTRACT

Filters which modify their structures in order to recognize
initially unknown waveforms in Gaussian noise are investigated
experimentally. The class of filters discussed include two types
previously described in the literature and one néw type designed
explicitly for operating in a multiple waveform environment. The
new structure processes the data in a nonlinear fashion and effec-
tively sets up a narrow decision region about the estimate of the
waveform. The parallel operation of adaptive systems for detecting
and estimating the signal parameters of multiple signals simul-
taneously is also discussed.

Throughout the discussion, the emphasis is on the effects of
time of arrival errors and incorrect decision errors such as false
alarms and incorrect signal identification. Low signal-to-noise
ratios, 5 to 20 (7 db to 43 db), are studied.

The results clearly demonstrate the possibility of using filters
of the new type for automatic data processing. Results are given
in the form of learning curves which show the effects of correct and
incorrect decisions. Included in muchof the discussionis a graphi-
cal interpretation of the filtering process.

Two unusual applications of the new filter structure are

discussed in the appendices.



I INTRODUCTION

Many areas now being investigated may be considered as
examples of pattern recognition or as the extraction of the
relevant information from the irrelevant. Signal detection may
be viewed as such with noise being the unimportant component.
Today's world is beset by masses of data which, at some time,
must be examined for the relevant. If the data could be analyzed
automatically, great savings in time and storage facilities could
be realized. For example, pulse signals could be recorded in
terms of shape and time of arrival rather than as a continuous
input. At the very least, machine analysis could determine which
part of the input was completely useless and which may rcquire
additional study. On the other hand, near optimum machine
performance would provide greater quantities of more reliable
information than are presently possible. Most of the effort in
pattern recognition has dealt with patterns known by the observer
beforehand (for example, check reading devices, radar detection).
Emphasis is now on the recognition of partially known or poorly
articulated patterns* (1-5) (for example, recognition of hand sent

Morse code, handwritten letters or spoken words).

It is the purpose of this study to consider the automatic

processing of pulse waveforms in noise. In particular, the paper

*
Numbers in parentheses refer to references given on page 131.
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will be concerned with an experimental investigation of systems
which modify their structure in order to recognize initially unknown
waveforms in additive Gaussian noise. Some systems of this type
have been discussed previously under the generic name of adaptive
filters (2-4). Limited experimental and mathematical studies of

their properties have been carried out (2, 6-10).

A general treatment of the problem requires consideration of
the following desiderata:

1. There is no guarantee that the input contains only one
waveform train.

2. The signal amplitude may vary over a wide range from
pulse to pulse.

3. The waveform structures are initially unknown.

4. There is no realistic way by which costs may be assigned
to errors.

5. The probability of occurrence is unknown and the
repetition intervals may be random.

6. The times of arrival are unknown.

7. Alimited number of signal repetitions are available to
the observer before they vanish.

8. The processing is to be as close to real time as possible.
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The first two conditions represent the severest departure from the
past. Previous work is restricted to situations where only one
fixed amplitude waveform is present. Unfortunately, if the con-
tents of the data are unknown, it can neither be assumed a priori
that only one pattern will be present nor that the patterns will have
fixed amplitudes. Condition 4 reflects the observer's ignorance of
the precise causes of the waveforms present. The causes are
presumed unknown because the waveforms are unknown. Similarly,
the probability of occurrence must be unknown. Together, these
statements imply that the decision thresholds must be chosen on
the basis of allowable false alarm rate cr other intuitive judgments.
Statements 6 and 7 are obvious, but lead to basic limitations in
what the observer can expect to determine from the data. Each
condition is sufficient to limit the final degree of knowledge of the
waveform parameters. Although in past work (2,4) it has not been
claimed that the arrival time was known, it has been implied that
it could be measured exactly. Clearly, the presence of noise
spreads any measurement of time of arrival. The last requirement
is somewhat arbitrary, but is imposed as a limit on the processing
which may be used (for example, repeat runs for detection of other
waveforms after all examples ~f one signal have been identified are

not allowed).

[T
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It should be noted that an observer is not always faced with
all of the above constraints. The relaxation of any of them means
that the filtering requirements can be more accurately stated. Con-
sequently, a filter designed under reduced restrictions will perform
better on the average than a completely general one. Alternatively,
the more general system will operate if the a priori knowledge of
conditions is poor or faulty; whereas, the special one may fail.

For the analysis of unknown data, then, the most general system

must be used.

To proceed, it is necessary to make some assumptions which
will hold throughout the discussion. The basic assumption, central
to any scheme which utilizes past information, is that this informa-
tion must be useful in the future. In other words, a system improves
its performance only if future situations are similar to those of the
past. In terms of the waveform filter, the signals are required to
be repetitive. This is necessary from the point of view of reliably
determining waveform structure and continually improving system
performance. It is also presumed that the pulses do not overlap
in time (that is, the pulse trains are interleaved). Further, it is
assumed that the noise is stationary, additive, and Gaussian with
a known variance and gero mean. Any realizable data is bandwidth
limited by sensors or prefiltering and it is supposed that this limit

(W) is known. The duration of any pulse is also limited (< T).
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Thus the input can be represented by 2ZWT measurements. The
choice of T is left to the discretion of the observer but must be

large enought to include any waveforms of interest.

Proceeding from these conditions and assumptions, the
study includes the derivation of a new type of filter by means of
statistical decision theory. This filter, which is designed for
multiple waveform environments, is described along with other
adaptive systems in Section II. The inherent difficulties in trans-
ferring the equations to practice are discussed in Section III. The
principal problems involve measurement bias and readout time
errors. Some mathematical analysis of the adaptive filters is
carried out in Section IV. A number of different filter types in
various environments are studied experimentally in Section V.
Special emphasis is placed on low signal to noise ratios and the
effects of decision errors. Included in much of the discussion is

a graphical interpretation of the filtering process.
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1I. THE DETECTION PROBLEM
A, MATHEMATICAL TREATMENT
The usual problem of signal detection is approached
from the point of view of hypothesis testing (11). Under a number
of different criteria which minimize the cost of the decisions to
the observer this leads to the use of the likelihood ratio A(V) for

comparing hypotheses.

(Fr(VIs, Dg
Qa

MV) = (1)

(FN(VISg ”S,,

<FN(V'SQ)>SG - IW(SQ) FVIs yas, . (2)

The function (FN(V |S':l ))S is the N-dimensional conditional
probability of the waveforr: S(1 causing the data V averaged
over the unknown parameters of the waveform. The function
W(Su) represents the distribution of the true signal parameters

*
about the values So. known to the observer.

The hypothesis Ha that signal Su rather than Sp is

present where only these two are considered, is chosen if
MV) > A g (3)

where the threshold AM3 depends upon the costs assigned to the

errors or the error rates allowed. The problem of detecting and
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separating multiple signals in noise generally involves the
construction of likelihood ratios for each pair of signals, including
noise. This yields a signal space which is broken into various
decision regions. The technique is useful only if no waveforms
other than those previously identified are present. This assump-
tion cannot be justified in the design of a system which is to look

at incoming data with no knowledge of its contents.

It is obvious that the situations which will be of most
interest in solving the overall problem will be those of detecting
a waveform in noise and detecting a waveform in an environment
of other signals, the characteristics of which may not be known.
Some of the cases to be discussed here have been previously
treated elsewhere (Cases I-IIT) {2), but are included for complete -

ness and later use.

In the discussion to follow, it is assumed that

N
v(t) =m2=1 Vi fm(t) 0<t< T (4)
v(t) = s(t) + n(t)
Vo, = 8,+n (5)

where the set {fm(t)} is a complete orthonormal basis over the

interval 0 <t < T. For the purposes of this paper, it is convenient
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to consider the expansion to be in terms of sample values spaced
T%W' seconds apart. This representation yields noise coefficients
n which are independent Gaussian variables with zero means

and equal variances vz.

Case I Detection of a Completely Known Signal in Noise
If the waveform is completely known and can be specified

by N = 2ZWT independent measurements, then

N . N
WS = o Blag, ceg) . WS = T 6lsg) (6)
N/2 N
(_12') exp [- —1-2- z (vm - m:)z
MV) = 2o / 20 m=1
N/2 N
1 2
( ) - z
2no exp[ ;Z' m=1 Vm ]
N *Z %k
= exp [- ;-z- mZ;i (‘mo, - Zsmn vm) ] . (7)

Hu. is selected if Equation {7) exceeds Ao,' The decision can also

be made if

*
1 vm ama > Aﬂi

M2

(8)

m

The correlation between the input and the signal provides the

optimum measure for making the decision.
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Case II Detection of 2 Completely Unknown Signal in Noise

In this situation, it is necessary to assume some form
of signal parameter distribution and it is usual to assume that the
parameters are equally likely to occur at any point in the signal
space. Therefore, a uniform distribution is assumed for W(Sa).
It is also assumed that only the region

s, | <4 d> ¢ (9)

ma

is examined for practical reasons. Then

d d N N/2 N
[ e ) el E e,
-d -d 2no 20 m=1
Mv)= N/2 N
1 1 2
(—) exp | - T v
2o [-Z:zm-i m
N/2
2 N
ono 1 b2} 2 . 10
~ ) °"P[;;z Z vE] (10)

Comparison of Equation (10) with a threshold is equivalent to

comparing Z vrrZ‘ with a different threshold. The decision is
m=1
made that a signal is present on the basis of the energy measure

2
> A ) (11)
1 m %2
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Case III Detection of a Partially Known Signal in Noise
The basic assumption here is that the parameter values
known to the observer have a Gaussian distribution about the true

parameters with variance kz.

N/2 N .2

i 1
Wis) = () Toew [ (e cagg) ] (12)

[T o[ b B o) ]

2w{k"+o") 2(k"+0”) m=1
MY) NIz N
[—z‘ ] exp[- 1z 2
2no 2nc“ m=1 ™
N/2
—[T—Z-GZ ] e [-—2——2—1 {- 2 g vZ-Z g vV_ B *+ gs *2}]
+k 2(k"+07) ;'-zm-i m g m ma g me
(13)
Ha. is chosen if
2 N N
1 k 2 *
- 1. T v +2Z v_ s > A . (14)
k®+o {':z-m=1 m m=4 ™ me a3

The value of k is a measure of the uncertainty in the
observer's knowledge of the parameters. If k = 0 the signal is
known exactly and the detection process reduces to Case I. If k
is very large, little is known of the parameters and the process

reduces to that of Case II.
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It would be possible at this point to determine the optimum
detection method for separating two waveforms, each of which are
partially known, but this will not be a significant case in the develop-
ment. Middleton (9) has discussed this situation in detail. What will
be of interest is the separation of a partially known waveform from

other unknown signals.

Case IV Separation of a Partially Known Waveform from All Others
In this situation the distribution of parameters of unknown

signals is again assumed to be uniform throughout the space in a

manner identical to Case II. The partially known signal is again

assumed to have a Gaussian distribution about the true parameters.

N/2 N 2
[t T i et
MV) = 2m(k"+g ) 2(k“+0”) m=1
J".I..J’d( 1) 4 y e exp[-—Ly (v, 9,417 ]ds
T 2d E;'Z' m=1 '2-;2' m "mp mp
4d2 N/2 s N * 2
¥ [Zw(kz +o'z)] exp[_ Z(kz+o'z) mz=1 “m™ %ma) ] ' (19)

This is equivalent to saying that Hn is chosen if

N 2 N * N *2
v _-2Z v_s + Z 8 < A . (16)
m=i ™ meq ™ ma -, "ma a,

Equation (46) is simply a squared error criterion. If the above
measure exceeds the threshold, it is decided that a waveform other

than Su is present. The waveform may be another signal or merely

noise.
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One feature to be noted is that the filter will fail to detect
a signal of the same shape as Sa but with a different amplitude.
The problem would occur if there should be a change in transmission
characteristics that is not reflected in a change of parameter
estimates. It therefore becomes important to investigate the type

of filter that would be necessary for variable amplitude waveforms.

Case V  Separation of a Known Signal with Variable Amplitude
from All Other Waveforms
Once again a uniform distribution of unknown signal
parameters is agssumed. For the known signal it is assumed that

the amplitude has a Gaussian distribution of mean Ao and variance

az. The values of the known parameters are given in normalized
N
form with Z LI :Z = 4. Under these conditions the likelihood
m=1
ratio becomes
1 /2, N/2
MV) = (—Z)  (—)
2na 2no

N
jm j‘w Tew ['ﬁz(vm‘.ma )2] bls, -As_ )ds exp[-z—:-—z (A-Ao)z] dA
-0 -0

d .d N N/2 N

1 1 1 2
)t (=) m e[ty v, - d
!d J_d w e 7.2 m *mp "] d%pmg

m=1
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N
z

; 00 2
AMV)= (2d) exp 1 (v._ -As *) expl - 4 (A-A )2 dA
(Z"az)IfZ(Z"UZ)NIZ .[m [?m=i m ma ] [ZZ 0 ]

e (2N
21/2 2N/Z
(2ra”) (2nc”)
I exp[_ I).fil(v 2-ZAV 8 *+Azs *z)]e [— L (A-A )z]dA
o Zo- mei ™ m ma ma *P ZZ' (]
(Zd) N 2 N * 2
= exp Zv-"-(Zv_8_)
1/2 N/Z [ {
(Zwaz) (Zmr ) m=1 T meg e }]

N N
* 2 * 2 * 1 2
| exp[ {( E v m®ma’ -ZAmE‘vm'mnH\ m?ismnl}]exp[- ] (A-Ap) ]dA

N 2
but T s =
4 ma
2N N 2 N
AMV) = ( exp [+ { Zv.s_)-Z 2}
17 ,N/2Z m v
(Zvaz) (Zmr) m=1 R ]

I exp[ { Eivmam A} ]expr —z- (A- Ao)z] dA

o e Ao St s S P v

e i P i s
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1/2
N 2 2 N N 2
(2d) 2va o 1 2 *
AMV)= ( ) exp|- Zv(Z v _s_)
(2 ZUZ ZN,Z ;2+a2 [ZZ{m=1m m=4 ™ Mo }]
wa ) (2we) -
N 2
1 *
e - z - A
xp[ Z(a +U’) m=1 vm 'mo. 0} ]
N/2 1/2
"‘Mzz’ “zﬁ“z’ exp[-—5 g"2"—?:1;—-2" Zuah
2no o +a 20°m=1 ™ 20%a‘+s”) m=4 ™ M¢
24, N . Al ] )
+TT Z v s -3 . 17
2(a“+0°) m=1 ™™ 2(a%+0“)

Thus, Ho. is chosen if

N 2 N 2 2A 0% N A 2gt
"Iyt Evoe) by T v~ > Mg
m=1™ a%c° m=4™ ™ 2% m=1 ® a‘te %5

(18)
Notice that the variable amplitude has introduced a new term of the
N x 2
form ( £ v_s_) . This term will also arise in the last case to
m=1 ™ ma

be considered.
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Case VI Separation of a Partially Known Waveform of Varying
Amplitude from All Other Signals
A number of assumptions are required to produce any
results in this case. Their justification will be considered more
completely later. The signal parameters known to the observer

are once again presented in normaligzed form, that is

The true normalized parameters have a Gaussian distribution about
the estimates, and once more a Gaussian amplitude distribution is
assumed. The characteristics of the other waveforms remain the

same as in the two previous cases.

N/2 y N/2 g A2 *
AMV) = (——z) (—2') (——z')
2no 2rk 2ra

xp[ -—Z( m®ma’ z]exp[- 2—:_2 ('mn 'A'm:)z]d'mn exp[- 'z—:z(A-AO)z]dA
d ; N

N/Z N
SR e

i

-0 ~com=1
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N/2 N/2 1/2 2.2 N/2
1 1 1 N[ 2rk“c
AV) = ( | | I | ) ()|
Zmrz Zwkz Zvraz k™ +o ]

a0 1 N *2 - 2
exp|- —y—y- z( -A ) |e '-—Z-(A-A )} |dA
j..m [ 2(k“4+0")m=1 Ym ™ *ma ] L 2a 0 ]

Proceeding as in Case V the likelihood ratio becomes

N

2 N/2 2,.2 i/2
44 o +k 1 2
/\(V)’[ ] [ exp[- v
2n(k®+0%) RN 2k2+0%) m=1 ™
2
2 N 2 2A N A
g (E vty b T ovsn |
2k 40Nk +0°+a’) m=1 ™ ™ 2(k+0%+a“)m=1 T ™ 2k +0“+a”)
(19)
The optimum detector chooses Hu if
2, 2
N 2 N 2 2A,(k“+¢°) N
"I vt (D vel) by T ovaenn
m=1 ™ k°4c“+a” m=q ™ M k“+0 +a m=4 ™ me
(ksz)Aoz
-~y > (20)
k“+a"+0o %6

The detector, as did the last one, measures the input energy, the
correlation of the input with the estimate, and the square of the

correlator output.
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An interpretation and extension of the previous results
will be presented in Part B but some superficial discussion of the
assumptions involved is in order. It is unlikely that some of the
suppositions will ever be met in practice. A Gaussian amplitude
distribution is quite improbable, particularly since it implies a
definite probability of the amplitude's shifting signs. Such a dis-
tribution also implies an a priori knowledge of the input. Case VI
is also suspect since a true Gaussian distribution about the
normalized estimate seems unlikely when the amplitude is variable.
However, Case VI can be somewhat justified by noting that it reduces
to the other problems in the limit of a -+ 0 and/or k = 0. It will
also be partially justified in the discussion of a graphical approach
to the problem. Therefore, the results of this section seem valid
in indicating the measurements which are required for the detection
problem. The coefficients of these measurements remain the weak

part of the discussion.

B. GRAPHICAL INTERPRETATION OF THE DETECTION
PROBLEM
In the mathematical approach to detection it was seen
that a signal was represented by N numbers. These numbers are
independent and can thus be pictured as components of a vector in
an N dimensional vector space. The detection process becomes

one in which the N dimensional signal vector (some components
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may be zero) is compared to the N dimensional input vector. -
Detection occurs when the data vector appears in a specific
region of the space about the reference signal. These ideas
will become clearer as the previous six detection cases are

re-examined.

In the discussion to follow, only two of the N dimensions
will be shown. These two will be defined by the plane formed by

the data vector and the signal estimate vector.

Casel Detection of a Completely Known Signal in Noise

The problem is shown graphically in Figure 1 with the
signal and noise classes represented as circles. Although the
areas are shown as non-overlapping, there is a finite probability
that the signals and noise will be outside the boundaries and will
indeed overlap. The radius of the circle is large enough to
include some arbitrarily large probability that the occurrence of

8 o Will be within the boundary.

>s.
NOISE SIGNAL
CLASS CLASS

FIGURE 1 BASIC DETECTION SITUATION
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The optimum filter was of the form
N *
v s > A (8)
m=1
which is seen to require a calculation of the projection of the data
vector onto the signal vector
N "
T v.s_ =|V]|s |cost
m=q ™ mo a

Detection takes place when

Au
|V| cos 6 > 4
s, |
However, Aq
IVI cos 0 =
Is, |

is the equation of a straight line perpendicular to sc » 80 the
optimum filter can be represented by the region shown in Figure
2. The choice of Aa. . depends upon the criterion chosen. The
data V would be detected as an example of Sn . Notice that this
filter will detect a very large signal which may be almost
orthogonal to Sn; thus, the filter is not good for separating

waveforms.
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DECISION REGION

e ey eommel aalee sy g ==

FIGURE 2 DETECTION OF A KNOWN SIGNAL

Case II Detection of a Completely Unknown Signal in Noise
Here detection is based upon
N 2
v > A . (14)

m=1 ™ %2

Graphically this is shown in Figure 3. It satisfies the intuitive
feeling that if nothing is known of signal parameters, one must

search in all directions equally to determine the presence of a

signal.
P -~ -~
7 \
/ \'J
/ \
/ \
| |
\ /
\ ,/ DECISION
N s REGION
\\ P d

— -

FIGURE 3 ENERGY DETECTION
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Case III Detection of a Partially Known Signal in Noise

The optimum measure for this problem is

2 N N
1 k 2 *
-3 1= I v *+2F v_es > A (14)
k™ +o {o' m=4 ™ m=1 ™ mn} bl

which can be written

2
Kk 2 * 2, 2
pra [vI®+2z|v]ls | cos 6 > Aa3(k +0°)

If the S: direction is called the x direction, the filter

becomes
k2,2 21s¥|x > A (KP+ed)
7 (x +y ) + a X a 3 g

otherwise written

Iyl 2, 2 2, 2., of | *2

which is the equation of a circular decision region. The graphical
representation of the filter as a function of £ = u'z/kZ is shown in
Figure 4.

The filter has been proposed as an adaptive filter (2), in
which, after each detection, the value of k decreases and the weights
of the various terms are automatically changed. When this is done
and each detection is perfect Kk = u-z/.t where { represents the

number of previous detections.
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FIGURE 4 CASE III ADAPTIVE FILTER

In operation the filter has no estimate of the signal
initially, £= 0, so detection is based upon vector length as shown
in Case II. As { increases, the estimates of the signal parameters

improve and the filter approaches the matched filter of Case I.

Case IV Separation of a Partially Known Signal from All Others

In this case it was shown that Ho, was chosen if

N , N . N 2
Z v -2 Z v_s + T @ <A (16)
med M =g ™ me -, "ma a4

or, with S: chosen in the x direction

2
2 2 %* L
(x° +y°) -zlsu |x + lsnl < Ac‘ (22)
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*
which is the equation of a circle centered at x = ISa| as shown in
Figure 5. A vector lying inside the decision circle would be

detected as S‘1

- .-
SR
, b
l1,” \\\
—s* '\\

s{—'\ @ I/
/=2 \\ _ 7 /

l*® \\:.///

e

FIGURE 5 DETECTION OF A PARTIALLY KNOWN SIGNAL IN
AN UNKNOWN ENVIRONMENT

In operation this type of filter would initially detect the
presence of So. by means of energy and form an estimate S: of
the parameters. A rather large decision region (£ = 1 circle) would
then be formed which would insure that with some larger probability
the next example of Sa. would be properly detected. As the number
of detections and the quality of the estimate increase, the radius of
the circle can be diminished without decreasing the probability of

detection.
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The filter poses two apparent problems. As was noted
before, the filter will fail to detect variable amplitude waveforms
which are not reflected in the estimate. Secondly, if another
signal Sp is located in the vicinity of Su , it is likely to be detected
as Sn by this filter during the beginning of the process when the
radius of detection is large. Figure 5 also demonstrates another
point. If the repetition frequency of Sp is much larger than that

of Su , it may become quite likely that S_ will be detected at £ = 1.

g

At higher values of 1, this becomes unlikely, but, if it does occur

early, the entire future operation may fail, because the estimate

stored in the filter will be a linear combination of S: and S; and
[ ]

may never converge to either signal. These difficulties will be

reduced in the next two situations.

Case V  Separation of a Known Signal with Variable Amplitude
from All Other Waveforms

Detection of Su is based upon

2
N 2 N w2 2A, 0 N »
-Evni+" (Evmn )+—z—°—2- v L.
m=1 a +to° m=1 ma 2°+40° m=4 ™M a
Aozo'z
iy 3 > A (418)
2 +o %5
where
N 2
*
[ ] = 1
m=4 ™8
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With S: chosen to be a unit vector in the x direction the filter

becomes
2 2A % A 252
ey G g x>
a +o a“+o a +o %5
2 0'2
¥ g x - AT > A
a +o 5
or
2
o 2 2
(x-A )" +y < - A
o +a 0 ol (23)

which is the equation of an ellipse centered at Ao. The filter is

shown in Figure 6.

ad N
/ Ao \
{ >3 } }
\ "o /
N 7
~ e
\§_’/

FIGURE 6 DETECTION OF A VARIABLE AMPLITUDE KNOWN
SIGNAL IN AN UNKNOWN ENVIRONMENT
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The filter can be interpreted in two ways. If the
amplitude of the signal truly has a Gaussian distribution, then
the filter is a fixed one as shown. If the amplitude is fixed and
unknown initially, the filter becomes an adaptive one in which the
Ao in the equations is actually an estimate, and az decreases as
the estimate improves. Finally, the filter would reduce to a

circle centered at the true value of Ao.

Case VI Separation of a Partially Known Waveform of Varying
Amplitude from All Other Waveforms
This is the most general case and reduces to all other
cases in the limit. Detection of the partially known signal S: is

based upon

N, 2 N £ 2 2A4k40%) N .
- Tyt Ty ( B 8 )ty T v 8
m=1 ™ k“tc“+a m=1 a k“+0” +a” m=1 m a
(k2 +0?)A (
- —2—2_2. > A 20)
k"+0"+a %
where
N 2
3
s = 1
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With S: chosen as a unit vector in the x direction the filter becomes

2, 2
_yZ_ k" +o (x'AO

k"+0 +a

12>,
6

or

Yy t >3 (x-Ao) < -Aa (24)

which once again is an ellipse centered at Ao. The filter is shown

in Figure 7.
- "—'\\
.7 N
TN
AN
' AR Y }
\ N
\ v - l.w /1.'
\\\_’/

FIGURE 7 DETECTION OF A VARIABLE AMPLITUDE
UNKNOWN SIGNAL
It is seen that the optimum decision region under the
given assumptions is an ellipse whose size decreases as the
number of detections increase. A more thorough discussion of

these results will be presented in the next section.
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C. EXTENSION TO UNIFORM AMPLITUDE DISTRIBUTION

Unfortunately, little of the discussion which has gone
before is of specific help in the problem being discussed. It ie,
however, useful in that it agrees with intuitive notions and thus,
to some degree, justifies the extension of these notions. An
extension of the theory from Cases III and IV will be undertaken
here.

As stated before, one of the main difficulties with the
derivation springs from an unrealistic amplitude assumption. The
Gaussian distribution will now be dropped in favor of a uniform
amplitude from Amin to Amax’ which will be considered the worst
case. A mathematical derivation of this filter is difficult, but it is
felt that Figure 8 is a good representation of a filter which separates
a known waveform of variable amplitude from any other waveform.
It can be arrived at by arguing that if the distribution is uniform,
all amplitudes should be examined equally. However, each ampli-
tude is examined by means of a circle centered at that amplitude

and this leads to Figure 8.

If the above reasoning is extended to the case of a
partially known waveform with uniform amplitude distribution,
the filter should be as shown in Figure 9. The same argument
applies here except that the radii of the circles depend upon the

degree of uncertainty in the signal parameters.



-37-

4 Amin Allnox\

FIGURE 8 UNIFORM AMPLITUDE DISTRIBUTION FILTER FOR
KNOWN SIGNALS

FIGURE 9 UNIFORM AMPLITUDE DISTRIBUTION FILTER FOR
PARTIALLY KNOWN SIGNALS
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If it is now stated that the final filter must separate a
partially known waveform of variable amplitude from noise and
other possible signals, the solution will be a combination of
Figures 9 and 4, and is shown in Figure 10. The dimensions

will depend upon the decision criterion used.

=
/4 \ A
1~ 1 ﬂs:,* N
\\ {‘ _ [:m_ -/
~_|_~-

FIGURE 10 FINAL ADAPTIVE FILTER

The filter is not easy to instrument because it would
N
%k
require powers of X v_ s greater than two for its
m=4 ™ ma
implementation. Various conic sections can be considered as

approximations to these filters. An ellipse is an obvious
approximation. A parabola also could be considered even though
it is open ended. This merely means that the filter will pass

very large waveforms and is identical to assuming Amax - .
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A hyperbola can also be used with the center at a large negative
value of x so that the right half of the hyperbola is the only one

of importance in the detection operation.
Any of these conic sections can be represented by an
equation of the form

Ax? +Bx+Cy® = K (25)

which in terms of the measurements to be used becomes

N x 2 N * N 2 N x 2
Zv s )+B( Z v_s )+C[Ev-(2vs )]:K
m ma m=4 ™ -4 M ma

A( m ma m=1

m=1

(AC){Z v s J)+BEZv s +CZvl=K (26)
m ma _ m

For an ellipse C<o0 B>0 A<DO
For a parabola C<o0 B>0 A=0

For a hyperbola cC<o B>0 A>0

e g o $et b o R Tt IOHK L OB LTS e
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Thus, one sees an indication of how the desired filter
can be implemented by using the measurements required for Cases
V and VI. Notice also that one of the approximations is just the
ellipse which was derived in those situations; however, there is
no specific rule for the values of the coefficients as a function of

the noise and uncertainty in the parameters.

It is easy to visualize approximate values for A, B, and
C and reasonable rules for their variation throughout the detection
process, but the validity of these rules is not known. The experi-

mental investigation of filters with decision boundaries given by

N .2 N, N,
*W(Z v e D) 4B D v hell) BT U (27)
N 2
T s =1
m=1 ma

where £ represents the number of past detections, will be presented
in Section V. The above form includes all six cases previously

discussed.

D. THE LINEAR ADAPTIVE FILTER
One other filter which has been widely discussed in the
literature (3, 6, 7, 8) will be investigated in modified form. This
filter determines the presence of a waveform by measuring con-

tinuously the correlation between the input and the memory. When
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the threshold is exceeded, the output of the filter is weighted and
added to the previously existing memory to obtain a new estimate.
Initially the threshold is set very low and noise is stored in the
memory. When a signal appears at the input, there is a certain
probability that the correlation will exceed the threshold. Once
this occurs, the threshold is increased and a signal estimate is
obtained. The memory has decay so that, in theory, initial in-
correct detections will not continue to prevent true detections.

The detection process is shown in Figure 14.

Several features of the graphical representation should
be discussed. The Ml vectors represent the stored waveform in
the memory before the (1+1)th detection. The figure also is
presented with the assumption that each detection represents an
improvement in M, but this is not necessarily true. Also the M's
are shown in one plane when in reality they are in different planes
of a hyperspace. The initial detection requires at least some
component of the memory to be in the S direction or the convergence
process will not begin. With no component in this direction, it
seems likely that the filter will continue to detect noise with a
corresponding wander of the memory vector until some component

lies in the signal direction. The filter then may begin to operate

properly.

R R T R
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FINAL

SECOND DETECTION

DETECTION |
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FIGURE 11 INTERPRETATION OF THE LINEAR ADAPTIVE
FILTER
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The version of the above filter which will be studied here

hag the following modifications:

1. The initial detection will be on the basis of energy

rather than correlation with noise.

2. The threshold will no longer depend upon the previous

correlation peak.
3. The threshold will not change between detections.

4. All data will be weighted equally in forming the

estimates.

These modifications lead to a filter with a decision
boundary given by

N

*
Z v_ 8
m ma

=A . (28)

m=1
Notice that the filter is just an approximation to Case III for large 4.
The observer uses the estimate as if it were exact rather than having
a degree of uncertainty. It may also be viewed as a filter matched

to the estimate instead of to the true signal.

D e
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III. THE COMPLETE FILTER SYSTEM - A DISCUSSION
A. LIMITATIONS ON ESTIMATE QUALITY

The equations of the previous section provide the guide
for the analysis of unknown data by adaptive filters. A complete

system may be separated into three distinct operations:

1. Determining that a signal is present (detection)

2. Determining the relevant parameters of the waveform
(estimation)

3. Utilization of the new parameters for future improve-

ment (adaptation).

The process of estimation and the use of the estimates will be
discussed here. In studying the estimation and adaptive operations,
the assumptions of Section II will be re-examined. The assumptions
are found to be poor at low signal to noise ratios; however, no

alternatives will be offered.

Glaser (2) has discussed the problem of estimation under
the assumptions of Cage II and Case III. The optimum estimate,
under a variety of criteria, with no previous knowledge of the signal
is the input at the time of detection. Assuming a Guassian distribu-

tion of the estimates, the estimate of the mth coefficient following

the Ith
] + 0'2 'r: [l-i]
-1

detection is

(29)
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ol
o]
SO

e (o3[} 20+ k)

value of Vin at the lth detection

variance of the estimate after the (l-i)th detection

Since the first estimate was merely the data

*mlt] = va[1]
K?[4] 2 K[2]= o¥/2

K[

Thus, the quality of the estimate does improve as the number of

n"

1]
q

]

e2/1 . (30)

detections increase. The estimate can then be written

MUOES SRS St SIS - IN)

= i {vmlt]* vl ]+ valt]} - (34)

Cu e LS s et BN Bk 1 Een S T N
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The optimum estimate is then the average of all data samples. In
other words, all estimates are weighted equally in determining the
final estimate. In the analysis, it is implied that the time of arrival
of the signal is known exactly and that the process of making a
decision does not affect the post-estimate distribution. Unfortunately,
neither of these conditions is correct.

The quantity Vi is a measured value and, as such, is
subject to certain errors. One error arises because the measure-

ment must be made at a precise time

N N
v(t) = mﬂvm £t s(t) = mii s, £t

T
. - _[0 s(t) £_(1) dt (32)

but s, can be obtained by passing the signal through a filter with an

impulse response

f (T -t) 0<st<T

m
T

£(t) = I slt-7) £_(T-7) dr
0

Letting
¢ u=T-7

T

r(t) = I s(t-T+u) £_(u) du (33)
0

it can be seen that r(T) = s -
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However, the decision that the coefficients should be réad out is
based upon some measure of the data. At the time chosen, the

outputs of the orthogonal filters are A by definition. Because
of the presence of noise, the readout time tR is not, in general,
equal to T and the expected value of Vin is not LI There will

be some distribution of readout time error y, and

E {sn:} = J.OTJOO D(y) s{y+u) fm(u) dy du . (34)

=00

The final estimate (after an infinite number of detections) is

* (o)
s (u) = I D(y) s(y+u) dy . (35)
-00
The final result is not s(t), but it is the convolution of s(t) and the
readout density function D(y) | see also (6)]. In terms of sample
values (where the sampling rate is synchronous with the repetition

rate)

E{'n:[‘]}= 11‘ [No 8t Ny Bt
+N_, am_1+"-]

N N

2ot} BBty E BTt 09

EERETRTITE YRV FeREy
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In review, the assumption that A has a mean of ®n holds at one
time te only. The expected value of Vo is s only if all detec-
tions occur at the proper time which leads to D(y) = &(y) or DO = 1.
Thus, there is a limit to the accuracy of the estimate which depends

upon the ability to determine the proper readout time.

It appears obvious that the optimum D(y) or Dj for use
in parameter estimation is the one with the sharpest distribution
about the true time. The problem becomes one of maximizing the
probability of detection at the correct time. Figure 42 illustrates
how the problem may be approached. Figure 12(a) represents a
signal and Figures 12(b-f) represent the various parameter
estimates which are obtained for different choices of tR. It is
apparent that what is really desired in readout determination is
the separation of signal - Figure 12(d) - from the other four. Thus,
readout can be considered as a multiple detection problem where it

is to be decided which of 2N-4 waveforms (2N, if the null signal is

included) is present.

Using the elements of decision theory leads to the

construction of decision rules of the form

(FpVIS, Mg,

ALV) =
(F(visg ))Sp

Nap - (1),(3)

where Sp represents time displaced versions of Su .
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]
Tt Tz T! T4 TB
INPUT SIGNAL
(a)

=T, S"={0,1,2}
(c)

3

=T, s={2,3,0}
(e)

[} ] '
ta=T, S™{0,0,1}
(v)

]

ta= Ty S'={1,2,3}
(d)

th* Ty S ={3,0,0}
(f)

FIGURE 12 ESTIMATE VARIATION WITH READOUT TIME
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By making the same assumptions as for Case III, Section II, Hu is

chosen if
N/2 N 2
i 1 *
—r g I (v _-s_)
_em(k 4o ):l exp[ 2(k“+0°) m=4¢ ™ ™ ]
MV)= N7 N > A (37)
3] =l E O]
2n (k40 2(k*+0%) m=1 m+)
or
z * X * N 2 2
z:ivmﬂ 'Zmz-‘ivm lm+j > Z(kz+¢2) n I\j +mfi( 'n: - 'm+} ). (38)

The values of Aj' depend only upon the costs assigned to the errors
since the probability of occurrence of all signals is the same. A

graphical representation of this situation is shown in Figure 13.

It should be realized that while this type of measurement
provides the optimum timing measurement, it is difficult to
instrument for moderately high dimension signals. A reasonable
approximation to the decision region of Figure 13 would be a parabola
centered about the estimate. Thus, the filter developed for detecting
waveforms in an unknown environment can also be used to provide

good timing information.
®

The costs of more accurate identification of tp are two-
fold. The probability of detection is lowered because of the decrease
in the acceptance region. The more important effect is the increased

reliance upon the quality of the first detection. By narrowing the
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FIGURE 413 READOUT AS A DETECTION PROBLEM
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decision region, succeeding detections are going to depend greatly
on the first estimate. All detections will occur with about the same

time error as the first.

The fact that decisions precede the estimation process
leads to another basic difficulty with the problem formulation. The
estimation procedure is accurate (neglecting now the readout error)
if it is known with certainty that a signal is present. If the presence
is not known, then a detection decision does two things; it eliminates
some examples needed for an accurate estimate and, secondly, it

allows false alarms to be accepted as signal examples.

As an example, consider that a linear filter is used for
detection. A detection decision is made when

N *®
Z v._s_ >\ (39)

m m
m=1

and at the same time a new estimate is made

new 8

n_ s >A-Z s_8 . (40)

R ————
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Letting
N
X= Z n l* ,
m m
m=1
we have before detection
| 1 :lzZ
plx) = exp [ - ] .
N 2
N 2 2 *
2 * 200 L ¢
2no” T 8 m
m=1 ™ m=1
and after detection
2
exp [-—F—7]
2 *
20 8
m=1 ™ N *
pd(x)= o J aX)A-E 8 8
x : m=q ™ M
N, exp[-—N—zz " ] dx
A-Z 8 _ 8 20 8
m=4 ™ ™ m=4 ™
N %
= 0 X<A-Z s _ @8
m m
m=1
(42)

But

s

14 0o 2
N2 | v, [—Rz]==rm
ZmrZ z L A-Z 8 ®%m Zo'z z '

m=1 m=1 ms=1 (43)

P d(a) = the probability of detecting S

L ARIAES Rt e A R T I RO C RO Py VWP
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The expected value of x after detection

1 a0 xZ
2 * A-Z 8 _» 20°Z »
P(2roc” Z 8 ) m m m
d s m m=1 4
m=1
N 2 4/2 N * 2
o-Z s (A-Z s_8_)
4 g m g mm
|\ — 55— e[—x— ] - (44)
d 2 *
20 s
1
N *
Equation (44) is the bias of T n 8 . Thus, after detection, the
' 1
noise has a bias with a component in the direction of the old
N
estimate. As Z s s * increases, P, increases, and the magni-
g mm d

tude of the bias decreases. Therefore, at high values of signal-to-
noise ratio the bias is unimportant. Two cases are shown graphical-
ly in Figure 14. Figure 14(a) shows the expected value of the

estimate for a correct detection and Figure 14(b), for a false alarm.

The question now arises as to what effect the estimate
bias has upon the operation of an adaptive filter. The expected

value of the data (at correct time) is no longer the signal, but
*
E{V} = S+qS : (45)

If estimates of equal value are desired, new data must be weighted

more heavily than old data due to the occurrence of the bias term.
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E{vV AFTER DETECTION}

(o) BIAS IN TRUE SIGNAL DETECTION

/ E{v AFTER DETECTION}

(b) BIAS IN FALSE ALARM DETECTION

FIGURE 14 GRAPHIC INTERPRETATION OF DETECTION BIAS

PR
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The argument against weighting new data more heavily is that it
inay be the result of a false detection. Notice that in the case of a

false alarm, the bias actually has some merit. For a false alarm

E{v} =rs” (46)

and the new data do not affect the total estimate drastically. If
the post-detection noise were truly random, the deterioration of
filter estimate could be severe. Similarly, if another waveform
were identified as S, the bias would make the decision less harm-
ful to the estimate. On the other hand, true detections show less
improvement. Overall, it appears that equal weighting of the data

is still the best procedure.

The preceding discussion illustrates that the assumption
of Gaussian estimate distribution is unrealistic at low signal-to-
noise ratios. However, the results obtained appear useful. The

use of more precise distributions W(S) does not appear feasible.

B. EXTENSION TO MULTIPLE SIGNALS
Some work has been done on separating partially known
waveforms (9), but it is necessary to retreat one step and
determine how the obgerver can obtain even partial knowledge of
the second signal. The main difficulty in multiple signal detection
arises from the fact that the detection process is not stationary as

the equations imply. The problem may be illustrated by Figure 45.
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FIGURE 15 DIFFICULTIES IN INITIATING SECOND FILTER

Here, it is assumed that Su has been detected and a decision region
has been defined about the estimate. Any new waveform present in
the input would be optimally detected by means of energy if it did

not fall within the Sa region. Data vectors V1 and VZ, which are
slight time displacements of the same pulse, may be used to show
that the problem is not stationary. The data may be an example of
Su in which case it would be detected properiy at one time. Ata
slightly different time it would be detected as a new waveform. If
the data were Sp , the same situation might arise. In other words,
the observer might decide two waveforms were present when, in fact,

only one was. If V 1 and VZ both lie outside the Sa region, a new

detection is unambiguous.



-58-

In view of the above discussion, a rather arbitrary
criterion has been chosen for determining the presence of a second
waveform (only two will be considered). The criterion is based
upon the assumption that the S‘l filter provides more information
than the energy alone. Consequently, a new signal is detected if
and only if there is no detection from the Sa filter during the
interval that the energy threshold is exceeded. As a result, a new
waveform will not be recognized if it is incorrectly detected by the

first filter. After the first detection of S , the two filters operate

g’
independently.

It is of interest to examine graphically the expected
operation of a number of filters in an environment of two waveforms.
Figure 16 shows three basic configurations which will be studied
experimentally. In each case, the filters are tuned to Sa and the
effect of another waveform S5 is of interest. Generally, it would
be expected that the parabolic filter would be affected least while
the Case III filter would be affected most by the presence of Sp .
Both the linear filter and the Case III filter may exhibit a tendency

to switch to Sp if the rate of occurrence of Sp is high. In the

p L
filter. These intuitive results will be verified by the experiments.

absence of S, , however, they should be superior to the parabolic
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(a) LINEAR FILTER

(b) CASE III FILTER

(c) PARABOLIC FILTER

had TR S Y

FIGURE 16 COMPARISON OF BASIC STRUCTURES
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IV. NUMERICAL ANALYSIS OF SOME ADAPTIVE FILTERS

The present section will attempt to assess the operation of
some adaptive filters in numerical terms. The discussion is
limited to high dimensional signals and to two of the filters previous-
ly described. Similar treatment of the conic section filter is quite
difficult and is not included. The section is included for three

reasons:

1. It demonstrates the expected operation for N large (cases

which will not be studied experimentally).

2. It demonstrates parameter effects which are expected to
hold for low values of N, thus providing a guide for

examining the experimental results.

3. It includes derivations of some of the parameter values

used in the experiments.

The analysis is based upon the ideal assumptions of Section II.
It should also be noted that the probability of detection calculations
are carried out only at the correct readout time. There is also the
pocsibility of detecting the pulse at a slightly different time while
missing it at the correct time. Thus, true detection probabilities

are somewhat higher than those given.

The initial step of the filter procedure is the detection of the
firet signal. Under the conditions of Section I, the threshold must

be determined on the basis of allowable false alarm rate a. The
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dimension of the filter, N, must be chosen on the basis of some
intuitive judgment. Once N is selected, the threshold is chosen

by assuming that

N ., N 2
Z v. = Z (s_ +n_)
m=1 m m=1 m m

has a Gaussian distribution., For N > 100 the assumption is fairly

accurate (10). All n are independent with a mean of zero and a

N
variance o'z. In all calculations to follow Z will be written as T
m=1
2) _ 2 2
E{zvm}-zsm +No (47)
Var {Evz} = 4«:'22392+2No'4 . (48)
m m

Then, the probability of a false alarm is

1 00 - _Nzlz
4 JI\ exp[ xdrNo:r‘r ] o

4nNo

-]
n

i J.m 2 exp [-yz] dy . {49)
= A

4No'4

The observer can determine the value of A which yields the desired

false alarm rate a.
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The threshold A becomes

A= 202 A JN + Not (50)

which depends upon oz, a known value, and upon A and N, chosen

values.
With the threshold chosen, the probability of detection becomes
2
2 2
{x -(Esm+Nc )}

1 (2 o]
Pe 3 T j exp[. (80°L s “ + 4Nc7) ] ax
'\/Ztr(4o'22§m+2No' ) A m

Lo 9}

=_‘_I

/T A2e/N-Zs
8c%T s 2+aNc*t
m

exp[-y?] ay . (54)

Now, the signal-to-noise ratio R is defined as the signal energy

divided by the noise power per cycle (-W< f < W) or

T
I az(t) dt
0

Rz e (52)
c“/2W

or in terms of sample values

2
Elm ot

R:———z———-—
o [2W
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where At = 1/2W is the sample interval

Zs 2
R = __z’.“_ . (53)
o
Equation (51) becomes
00
Py = — j exp[-y2] dy . (54)
/T A JN-R/2
JZRIN

Equation (54) illustrates the obvious result that an increase in R
produces an increase in the probability of detection. For a fixed
R, anincrease in N lowers the value of Pd' Figure 17 demonstrates
the effect of N on the detection probability. The implications of

Figure 17 are several:

1. For the same energy, high dimensional waveforms are

more difficult to detect (by energy means) than low

2. A poor choice of N (N >> signal dimension) may reduce

severely the observer's chances of detecting the waveform

3. If more were known about the signal class (for example,
signal bandwidth less than noise bandwidth), better results

could be obtained with fewer measurements.
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Another technique for determining the presence of a waveform
has been proposed (3). It is based upon the correlation of the input
and a random waveform exceeding a threshold. A threshold may be

chosen by assuming

has a Gaussian distribution which again only holds for N large (12).

Mm is a Gaussian random variable of zero mean and variance kz.
E{Zvam}= 0 (55)

2, 2 2 2
Var {Zvam}- No’k? +k?ze 2 . (56)

The probability of a false alarm is

1

o
n
™~
3
?I
Y
[ \¥]
=
[
> ‘——’8
]
N
2
Q
r
—
f

! IwA exv[-vz] dy (57)
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and the probability of detection is

1 I°° -x°
P, = exp dx
d Y A
,\/ZTr(No' k2 +1%zs d) p 2No"k"+k"Zs )
- 4 ]' exp[ ] dy . (58)

ST
/iTxU—
Figure 18 illustrates the characteristics of the correlation detection.
A comparison of Figures 17 and 18 clearly demonstrates the
superiority of the energy detection. In use, however, much higher
values of a are used until a signal is found. In other words, false
alarms are not considered a problem until a reasonable waveform
estimate is obtained. The correlation approach also eliminates the

need of much squaring circuitry.

Each of the above approaches chooses the readout time at the
peak of the filter output. The peak corresponds to the maximum
likelihood ratio for the detection decision. At the readout time,

the first estimates are recorded.

Once the first estimate has been made, the general filter to

be studied in this section takes the form

ADZvE+b(DEv_s = F(O) (59)
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where n_ and km are independent random variables of zero mean
and variance o’z and k?‘ respectively. Again, assuming N large,

F(8) approximates a Gaussian diatribution (40), (12).

E{Fu)} = c(Zs’+Ne?) +b,Te_e (60)
Var{Fu)} = c? 4%z, nzl + 2Nod) + byc szgmem

+b1 (o' Ze +k Eu +Ntrk) . (61)
The probability of false alarm is

1
'\/ZTI‘ {c ZNo +b (czze:l+No'z kz)}

J~°° [{ -(x-cNu') ]dx

c%2Ne +b1 o Ee2+N zkz)}

.t f’"
JT A - cNo?
V2 {c 2No* +b2(o%ze 24No?k?)}

exp [-yz] dy (62)
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and the probability of detection is

a0
2
P d=-—‘- j exp[-v ]dv

A \/Z[c ZNcr +b (o' Z‘.e +No'zkz)] cEl -b El m®m

»\/Z[c (40 Esm+ZNcr )+4b1co' Eamem+b1(o' Eenz‘+k22lm+No'zkz)]

(63)

There are now two situations which are of interest and can be
examined by means of Equation (63). The first is the linear
adaptive filter in which c = 0 and b1 = 1. Then
1 @

2
P =— - d . (64)
4”& A 2o(e? Ze 24Ne?k%)-Es_e exp[y ] Y

V2(c2ze 2iNcli 4T 8 2)
m m

If the estimate mean is the signal, 8 = ®m' and kZ = 0'2/1

14 (o o]
d
Y™ A JNWRI - RVIZ
V' N+R(1+1)

Turning now to the Case III filter and letting c = 1 and b, = 24

00
d"_1 .[ exp [-vz] dy
m
A s/4No' +8£ (o Z‘e +N k ) - Eu ZlElmem (66)
‘\/2(40' Zsm+ZNcr +81trzl7amem+4! T Z:em+kzznm+No'zkz])

e v b R B DL, sl IO - SIS Y Tan T

e ST
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Figure 20 shows the probability of detecting the second waveform
as a function of £ and the correlation between the signals. The
curves are plotted under the assumption that the expected value

of the estimate is sa . The optimum filter, Case III, is the best
at detecting Sa » but, unfortunately, it is also the one w!nich is most
likely to incorrectly identify other pulses. If the new waveform
had a larger energy, there would be an even greater probability

of incorrect identification.

The previous discussion was concerned with the performance
of filters on the average. Here, it is of interest to examine the
*
filters in terms of the measurable quantities Iu } . In the follow-

ing discussion L ia a constant between detections.

- 2 *
F) = c() Z vt bi(” z Vo ®m . (59)
Again F(f) is assumed to be a Gaussian distribution for N large.

E{F} c(Zsl+Ne?)+b,Ea_ .r; (69)

2
Var{r-‘} = cX(a0lz .r: + 2N + 4b1c21m|n: +bio‘zEln: .

(70)
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The probability of false alarm is

2
00 2
Q= 1 J‘ exp[ -(x-cNo ") ] dx
2.4 .2 2. %2 ) “2(cZaNetiels 5
2n(c“2No " 4bj o Es ) ¢ eNo Thyo &8
(e o]
= —t J‘ exp l:-yz] dy (71)
v A - cNo’Z
2.4, .2 2 *¢
4c"No +Zb10' s
2.4 2 2_ 2
A=A 2(c"2Ne +b10' Esm ) + cNo . (72)

Equation (72) provides a means of calculating threshold setting in

terms of arbitrarily chosen constants A, N, bi’ c, a known constant
2

o'z, and the measured value T sr:
For c =0 b, =1
/ 2
2 *
A= A ,/fec” Z 5 (73)
For c =1 b1 = 21

2
A= A %N¢4+ 80'2122 'n: + NO'Z . (74)



-75-

The £ term in Equation (74) represents the number of past detections.

The above choice of { is predicated upon perfect operation of the

filter. Therefore, any error of commission on the part of the filter

will result in an incorrect threshold level and a deterioration of the

optimum performance will result. The probability of detection

becomes
00
P .-:__1_. I exp [-yz]dy . {75)
e 2, 4.2 2 #2 2 *
A 2(c“2No +bio' Zam )-cEsm-biEumsm

z
2,2, 2 4 x 22
«/z[}_ (40%8s 2+2No) +4b,cZs_o”sbl0%z s ]

Equation (75) illustrates that for fixed waveforms and estimate

(between detections), the important factor in determining P d is

2
* *

ZTs 8 = Esz s cos 8
mm m m

The significance of the cos # term makes it a good measure of

quality for the filter.

Dn el A b R LS £ T S R 1 3 T M AR
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For c = 0, Equation (75) is exact for any value of N. In this

case the probability of detection is

Pee e 7, e[

]
(%
—

exp [—yz ] dy . (76)
%— cos 6

vT A
Thus, for the linear filter, P d depends only upon R and the
correlation measure, cos §. Curves of Pd versus cos 6 for

various values of R are given in Figure 21.
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V. EXPERIMENTAL RESULTS

The main purpose of the paper is the experimental study of
the use of adaptive filters for examining unknown data. To this
end, an extensive analog and digital computer investigation was
undertaken to determine the characteristics and limitations of
several systems. Prelminary tests were made with analog equip-
ment to obtain qualitative indications of performance. The large
amount of equipment involved and the approximations necessary,
limit the usefulness of the analog results. Consequently, they
contribute little quantitative insight into the filter operation. All

data presented here are the result of the digital computer simulation.

For purposes of simplicity and time saving, the computer
performed all operations including the generation of the waveforms
and noise. For the most part, the experiments were performed
with two waveforms S‘1 and Sp present. Figure 22 illustrates the
two waveforms which have slightly different lengths. The waveform
lengths were selected to be close to the filter length which was
chosen to be N = 10. To illustrate the effect of a poor choice of N,
a few trials were made with other waveforms of varying dimensions
which are also illustrated in Figure 22, The waveforms used were
invariant in shape, throughout the trials, corresponding to the
sampling of analog data with a sampling frequency which is synchro-
nized with the repetition rate. Appendix B provides some results

for true samplings of analog data. Another simulation has been
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carried out on one type of filter (8) in which the results from
sampled analog data were quite similar to those from computer
generated samples. The amplitudes of the waveforms were
usually chosen to provide signal-to-noise ratios of 5, 10, and 20,
The noise samples are numbers from a computer table of random
numbers. The table approximates a Gaussian distribution and the
samples are independent with zero mean and unit variance. An
example of the data processed by the computer is given in Figure
23. Although the data are really represented by sample points,

lines have been drawn between the points for clarity.

The waveforms occurred with fixed intervals for convenience.

In general, S‘1 occurred every 50 intervals, Sp every 100 intervals.
Most trials were limited to an examination of 1000 sample points

although a few had a duration of 1500 or 2000 intervals.

At each sample point p the computer was programmed to

calculate Fp(l) .

10 J 10 .

z vp+m-10'm z vp+m-10'm 10
m=1 m=1 2

F_(4) = a(t) + b(e) e T v oo 40
P 10 2 10 2 m=4 P
s s

m=4 ™ m=1 ™

L : (17

where { is again the number of past detections. In other words, at

every point, the last 10 data samples form the vector which is

examined. The processing is analogous to using a tapped delay line.
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The normalized estimates of Equation (27) are made explicit in
Equation (77). The number Fp is compared with a threshold and,

if it is below the threshold, Fp is calculated. At some time the

+
point p' will be reached where

F,>A and F

. pt-1 <A . (78)

Then, the computer goes to a subroutine which sequentially examines

the interval p' <p < p' + 12. At time p' the data values {vp,,vp,_1
’

vp,_g} are stored. Each successive Fp is calculated until

F For j s 12 . (79)

p
If this occurs, the memory is replaced by {vp'+j' vp'+j-1’ "'Vp'+j _9}.

If another value occurs,

F F j+is 12 (80)

prHjH ~ Fpl4j

the memory is again replaced by the appropriate data. At the end
of the twelfth interval, the time of the largest Fp is recorded, 1 is

increased by one, and the data {vp, vp-i vp _9} are added to the

g0
puter returns to the routine of determining Fp and comparing it

* %
old unnormalized estimate {’10' s : '1} . At p'+13 the com-

with the threshold. The interval of twelve was chosen to prevent
more than one detection of any pulse. At each time of detection,

the data and the new estimates are printed out.



-83-

In the case of parallel systems and Fpo. and an Fpp are

*
calculated using S:, Iu. , and Sp ' Ig respectively. In other words,

each system uses the basic equation with different estimates and,

in general, with different numbers of past detections.

The one

new feature arises in determining the first detection and estimate

f S .
! g

used here involves calculation Fpo,

after an initial detection of Sa .

and X v

The problem was discussed in Section III-B. The solution

10 2

p+m-10 at each point
m=1

At a time when

10 , R
T >
oy Vprim-10 7 A
10
L Vpnogsm-10 <A (81)
m=1

and
Fong < Ag
o

The computer goes to another subroutine which sequentially examines

the interval p" < p < p" + 16. If, at any time during this interval,
(82)

the computer returns to the main routine. If, however, at each point

of the interval

Fpa <A,

(83)
the energy peak is determined and the data at that time are used as

the first estimate of Sp . The computer then returns to the main

d F ..
an pp

routine and calculates Fpa

S TN DR NI R D
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The general form of Equation (77) allows all filters previously
discussed to be studied by a change of coefficients. It was convenient,
because of the time involved in compiling the program and data, to
process the same data with several filters. Use of the same input
is also helpful in comparing the systems. A subroutine was, there-
fore, employed to change the parameters after each pass through

the data.

Some of the parameter values are obtained from previous
equations, some are the result of guesses based on early analog

and digital work. The basic structures which will be examined are:
1. CaselI filter =0, a=0, b=0, ¢ = 1)
All systems to be studied have :his structure for £= 0.

The approximate value of the threshold (N large) is

Aqp = o2(2A VYN+N) . (50)

Choosing a false alarm rate a = 102 leads to A = 1.645.

Ay =20.5 . (84)

Equation (84) is approximate, but Turner (6) supplies a
table with the true threshold which will be used in the

experiments

Ay = 23.2 (85)

N NG, S o P st
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Linear filter (¢ 24, a=0, b=1, ¢ =0)

Detection is now based upon

N %
Z v_ 8
me4 ™ ™
> Ay, (86)
N 2
b2 8
m=1 m
or
N * N *2
= Vo 8m >AL z 8, = A . (87)
m=1 m=1
From Equation (73)
N 2
*
A= A 202 T 8 . (73)
m=1 ™
or
A, = A 202 (88)
L L
Choosing
o = 1072
gives
AL = 2.33 (89)
N %2
Case III filter (£ 21, a=0, b=2 z sm,czi)
m=1

Detection is based upon

N o, N .
m€1 Vo t ZmZ}=1 A >Am . (90)
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The filter takes the form of Equation (90) because the
estimate in the computer simulation is merely the
unnormalized sum of the past data. In other words,

assuming perfect detections

E{S:} =15, . (94)

From Equation (72)

'\/ z :
4 2 % 2
I A 4Ne” + 80 X LI + No

m=1

N *2
1.65 40 +8 T 8 + 10 . (92)
m=14 ™

Parabolic filter (£ 21, b= 1, a = -c)

=
]

Of the conic sections, only the parabolic form was
chosen for study. With no analysis of the filter, it
was necessary to make intuitive judgments about the
parameter value. Generally, it can be said that the
larger the value of a, the narrower the decision
region. Tests were made with wide, narrow, and
variable width regions. In some cases, the threshold
was chosen as a constant at the same level as that for
the linear filter. In other situations, the threshold
was reduced slightly as a function of {. It was thus

insured that a would be no greater than 10°2,
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Table I describes the parameter rules governing the six filters

examined.
TABLE 1
Description of Filters Examined
System 1 a b c A
1-6 0 0 0 1 23.2
1 24 0 1 0 2.33
N *Z N ™
2 21 0 2| T = 1 1.65 [4048 Z s +10
m=1 M mz=iM
3 24 1/23 1 -1/23 2.33
4 24 1/8 1 -1/8 2.33
.33
5 214 1/23 1 -4/23 2 + .
6 21 |(3+40)1073 1 (31+40)1073 2 4+ -3-3-

The value of o was purposely cho‘len to be high since
the effect of false alarms on future operation has been largely
ignored. By electing to observe numerous false detections, the
effects can be better assessed. It should be stated here that a
detection was identified as false only if all samples {vp, . vp _9}
represented noise alone. Thus, if the output of the filter was, in
any way, due to the presence of a signal {even one sample of

signal), it was called a detection of that waveform.

SO N e R v B



The experimental results are presented in three basic forms:

1.

Tables of errors and correct decisions
The number of false alarms,. correct detections, incorrect

identifications (identifying S, as Sa)’ and missed signals

B
provide the gross results of a trial. Correct detections
are those signals corresponding to the first signal

detected.

Plots of estimate quality versus time of detection
The plots represent the peak of the cross correlation of

the signal with the estimate, in other words, the largest
N
z s
m=1

J N N .2
\/( Z sl s
m=d @ m=14 ™

The correlation was seen to be a good measure of the

m+j *m

estimate quality. These figures provide a good indication

of the effects of false alarms and incorrect identifications.

Illustration of the estimate as a function of {
The figures are plotted to correspond to the impulse
%k
response of a filter matched to S . In other words, they

represent the time inverse of the signal estimate.
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The experiments themselves were designed to demonstrate
the tendencies and limits of the filters under a wide variety of
circumstances. On the basis of preliminary tests, it was felt
that filter opeération deteriorated rapidly for signal-to-noise ratios
below 5. The operating characteristics were determined at the
preassigned limit (R = 5) by making 48 trials with each system.
Each run contained 19 examples of Su (R‘1 = 5) and 10 examples

of SB (Rﬂ = 5). Table II gives one picture of the results.

TABLE II
Result of 48 Trials (Ra = Rp = 5)
System 1 2 3 4 5 6
False Alarms 156 159 66 30 122 106
Correct Detections 285 340 190 75 238 207
Missed Signals 319 294 444 529 366 397
Detection Percentage 47 54 34.5 12.5 39.5 34
Incorrect Identifications 129 162 62 8 90 71

Incorrect Detection Percentage 27 34.5 43.2 1.7 19 15

Detection percentage =

number of signals detected similar to first signal detected
number of signals available similar to first signal detected
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Incorrect detection percentage =

number of signals detected whichare not similar to first signal detected
number of signals available whichare not similar tofirst uilg_nm
As stated before, it was not possible to calculate the proper
thresholds for the parabolic filters. Table II, however, offers a
comparison of the relative false alarm ratio for the thresholds
chosen. Systems 1, 2, 5, and 6 have fairly high rates and can be
compared directly. The other two have fairly low rates and must
be compared to the linear or Case III filter with higher thresholds.
As expected, the first two systems in a multiple signal environment
detect the most waveforms, both correctly and incorrectly. It
should be noted, however, that an increase in the thresholds of the
first two would decrease the number of detections, correct and
incorrect. The conclusion, without experimental verification, is
that it is difficult to tell the difference between Systems 1, 2, 5, 6

at low R and equal false alarm rates.

A more useful picture of the results can be obtained from
Table III which illustrates the convergence tendencies of the filter

estimates as a function of the first detection.
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TABLE III

Convergence Tendencies of the Estimates

System i 2 5 6
Number of Initial S, Detections 26 26 26 26
Initial So. Detections Converging to Sn 22 22 241 20
Initial So. Detections Converging to SB 0 0 0 0
Initial S‘1 Estimates which Improve 16 14 11 14
Number of Initial S, Detections 11 11 41 u
Initial Sp Detections Converging to S(1 1 1 1 0
Initial Sp Detections Converging to Sﬁ 5 5 4 4
Initial Sp Estimates which Improve 1 2 2 0

Number of Initial Noise Detections 11 14 11 11
Initial Noise Detections Converging to So. 3 3 3 2

Initial Noise Detections Converging to Sp 0 0 0 0
It is seen that Sa was the initial detection about one half of

the time, and S, about one quarter of the time. Convergence was

B
arbitrarily assumed if the correlation between the estimate and the
signal exceeded 0.5. The estimate was said to improve if the last

correlation was greater than the first.
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It appears that if Sa (the predominant waveform) is detected
initially, it is quite likely that the estimate will converge to Sn . An
example of the convergence process is given in Figure 24. In this
example, the estimate improves rapidly until a few errors are made
which cause some deterioration of quality. If the initial detection
is Sp (low frequency waveform), it is much less likely that it will
converge. It is probable that the estimate will deteriorate com-
pletely, but there is also the possibility of convergence to Su . The
possibility also arose of a false alarm initiated estimate converging
to S‘1 . An example of this phenomena is shown in Figure 25. It
should be noted that about 40% of the filters actually improved their
initial estimates and about 70% terminate detecting the same signal

as the initial detection (null signal in the case of initial false alarm).

Another measurement of interest is the distribution of readout
times. Three separate distributions are shown in Figure 26.
Figure 26(a) represents the measured Dj for the energy detections
of Sn . Figures 26(b-c) give the distribution for the same data as
processed by Systems 1 and 4 respectively. The( results are typical
that System 41 has a wide spread of readout times while System 4 is
fairly narrow. System 4, however, detects far fewer waveforms at

R = 5,
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The results of this test alsc verify that the time of detection
of the first waveform to a large extent determines the time of
detection of the rest of the pulses. Hence, if the initial detection

is early, all will have a tendency to be early.

Although the general problem involves multiple waveform
environments, it is of interest to examine filter operation in the
presence of only one signal. Table IV gives the results of the few
trials run ueing a single waveform. The first three tests used
fixed amplitudes while the last treated the variable amplitude
situation. The initial and final quality of the estimates are given
and it is seen that they improve as the signal-to-noise ratio
improves. System number 4 does not seem to produce good results
until R = 20. In the case of variable amplitude pulses, all systems

worked well missing only some of the lower level signals.

Table V illustrates the filter operation in the presence of two
waveforms of higher signal -to-noise ratio. In one case, one signal
varies in amplitude while the other remains fixed. The one new
tendency displayed is the increase in incorrect detections by
Systems 1 and 2 as Rp increases. One would expect this tendency
to arise in view of past discussion. For example, a linear filter
matched to So. will detect a very large Sp even if the correlation

of the two waveforms is small.
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TABLE IV

Filter Operation in a Single Waveform Environment

System 1 2 3 4 5 6
Correct Detections 12 12 4 2 12

Ra= 5 Missed Signals 7 7 15 17 7

Rp= 0 False Alarms 5 5 3 i 3
Initial Correlation N & SR & S & S & S 4 |
Final Correlation .69 .68 .55 .66 .64
Correct Detections 17 18 15 2 17

Ru = 10 Missed Signals 2 1 4 17 2

Rp= 0 False Alarms 2 4 i 0 2
Initial Correlation .8 .83 .83 .83 .83
Final Correlation .945 .90 .91 .65 .92
Correcf Detections 19 19 19 17 19

Ro, = 20 Missed Signals 0 0 0 2 0

Rp= 0 False Alarms 1 1 0 0 0
Initial Correlation .905 .905 ,905 .905 .905
Final Correlation .978 .978 .985 .98 .985
Correct Detections 15 15 15 13 15 15

Ro. =5-40 Missed Signals 4 4 4 6 4 4

‘Rﬂ =0 False Alarms 2 2 0 0 2 1
Initial Correlation <945 .945 .945 .945 .945 .945
Final Correlation .95 .95 .965 .975 .95 .96
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TABLE V

Filter Operation in a Two Waveform Environment,

Systems 1 2 3 4 5 6
Correct Detections 15 15 13 3 15 14
Ra =10 Missed Signals 4 4 6 16 4 5
Rp‘= 10 False Alarms 0 0 0 0 0 0
Incorrect Identification 4 4 1 0 3 1
Initial Correlation .64 .61 .61 .61 .61 .61
Final Correlation .76 .77 .74 .80 .55 .79
Correct Detections 19 19 19 17 19 19
R = 20 Missed Signals 0 0 0 2 0 0
Rp = 20 False Alarms 0 1 0 0 0 0
Incorrect Identification 7 7 2 1 4 2
Initial Correlation .903 .903 .903 .903 .903 .903
Final Correlation .948 .963 .921 .979 .948 .924
Ro. =5-40 Correct Detections 18 17 17 14 18 16
RB =20 Missed Signals 1 2 2 5 1 3
False Alarms 0 2 1 0 2 1
Incorrect Identification 4 6 2 1 4 3
Initial Correlation .905 .905 .905 .905 .905 .905
Final Correlation .92 .93 .90 .975 .895 .94
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To demonstrate the discrimination superiority of the parabolic
filter over Systems 1 and 2 (linear and Case III), it is necessary to

focus on large signals. If Sp is made so large that

N * N *
z ’mp 8ma * . ®ma ®ma ! (93)
m=1 m=1

then no change in the threahold will affect the discrimination
properties of the first two systems. An experiment of ten trials was

performed with Ru =20 and sz 56, and the results are given in

Table VI.
TABLE VI
Operation with Large Sp
Systems 1 2 3 4 5 6

Initial Detection S(1

Per Cent S Detected 99 99 89 99 99

Per Cent Sp‘ Detected 100 51 16 61 34
Initial Detection Sp

Per Cent S, Detected 84 40 8 46 40

Per Cent Sp Detected 100 100 100 4100 100

Initial Detection Noise
Per Cent Sa Detected 94 60 0 79 60

Per Cent Sp Detected 100 4100 0 100 400

PN A 43 BT R TR 0
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Due to an error, no data was obtained for System 2. It would have
been almost identical to that obtained for System 1. System 4 per-
forms very poorly and detects nearly all waveiorms, while the
parabolic structures show varying degrees of discrimination. It is
also noted that System 4 is quite narrow and detects little that is
not similar to the first detection. The fact that it did not detect
either S‘1 or Sp after an original false alarm also verifies the

discrimination characteristics.

As one last test on this point two very large waveforms

(Rn= 200, R, = 900) were used and Table VII illustrates the results.

J
TABLE VII
Operation with Large Sa and Sﬁ
Systems 1 2 3 4 5 6

Initial Detection Sa
Per Cent Sa Detections 100 400 400 400 400 400
Per Cent Sp Detections 100 4100 50 0 50 0
As expected, the first two systems detected everything while the
others showed varying degrees of discrimination. System 4 com-

pletely eliminated Sp .
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A comparison of Tables VI and VII is interesting because it
reveals that the parabolic filters actually perform better in the
presence of large unwanted signals. This may be explained by

noting that detection is based upon

10 «\2 10 .
10 2 z vm+p-‘l.0°m z vp+m-10 *m
m=1 m=1
F=-aa Z v +m <10 ]+b . (94)
m=1 P 0 2 10 2
Zs Zs
1 ™ 1 ™
But
10
*
Z Vintp-10 °m
= |V| cos 6 (95)
10 2
Zs
y m
so Equation (94) becomes
-2 V2gin%0+b|V| cos 6 = F . (96)

At a fixed angle, the first term becomes more important at highgr
energy, thus lowering F below the detection threshold. In other
words, the larger the magnitude of the data, .the more closely it
must match the estimate to be detected. This particular feature

is of advantage in filters where the data is used to form an estimate.
A very large incorrect detection would deteriorate the future

performance greatly.
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To study detection and estimation of more than one signal at
a time, a second filter (B) was constructed under the criterion
discussed in Section IIl. In all cases filters A and B followed the
Bame parameter rules. Since filter B had no effect on filter A,
the results of A are similar to what has already been presented.
The performance of the second filter will be summarized. At low
values of R, the second system does not detect an initial signal
until quite late and, consequently, accomplishes little. Even at
Ro. = R, = 10 the second filter behaves poorly. In several cases,

p

the initial detection was S but the final estimate was Sq . Thus,

p L
in many cases, both estimates converged to S(1 . Figure 27 illus-
trates one complete system and the difficulties involved. Itis

noted that filter B did not begin operating until late because some

early examples of S, were being detected by filter A. Examples

4
of S, which were not detected by filter A did not have enough

enerpgy to trigger the second system until quite late in the run. At
higher gignal -to-noise ratios, the problem of incorrect detections

by filter A blocking initiations of filter B became more pronounced.
Thus, the linear and Case III structures worked very poorly in
parallel arrangement. The parabolic structures operated with
varying degrees of success, but for the most part worked very well
and in some cases perfectly. Figure 28 shows the correlation versus
time for one successful parallel arrangement. Figures 29 and 30

illustrate the build-up of the two estimates for the trial shown in

Figure 28.
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The only new feature here is in obtaining the initial estimate.
Once it is obtained, the filter B has the same characteristics as the
ones previously discussed. However, to insure a good initial
detection, it is necessary to have a structure with good discrimina -

tion properties.

A few other tests were algo run to demonstrate certain points.
One set of runs was made to determine the effects of different
dimension signals upon operation. In other words, the effect of a
poor choice of N or T was observed. It was found that for signal
dimenagion greater than N (Sc of Figure 22), the estimates con-
verged to a part of the waveform. For very low dimension
waveforms (SY and SG of Figure 22), poor results were obtained
for R = 5,40. There seemed to be improvement as the dimension

increased, but too few trials were made to be conclusive.

One test was made to show the change over from an Sa filter
to an Sﬁ filter. The input was set up to start with an Sa' detection,
but the normal repetition rate of S(1 was reduced by 4. Thus, Sp
became the predominant waveform. Figure 31 shows the estimate
correlation with each function as a function of computer time.
Figure 32 shows the final estimate of the filter. It is seen that
s,; - ;:0 provides a good estimate of Sp and a: - s; provides a
rather poor estimate of Su . The actual estimate was formed by
detecting in Sp pulses one interval early and the Sn pulses three

intervals too late. Thus, the observer obtains a somewhat ambiguous



-108-

NOILVIIJO ¥IALTII SNONDIFWNV JO NOLLVILSATTI 1€ TUNOLI

NOLLO3134Q 40 3NIL
O0¥i o0t 000! 008 009 10,84 002
Y Y T ! Y Y T

SNOI193130 35V x
SNOILO313q &S +
SNOLLD3130 ®S «

»0

)
o
%

90
40
80

60

| WILSAS . . X
02 =847y + +
+ o+
x
C +
o 4+ X 4o ¢ +0%X + X4 x
] ¥ T 1 ] | k]
+
+e X+, % 4.0, x +
4o X+ x
+
X L] +
+ [ ]

o'l

N © 0 ¥
O O O o
NOILYT34H0D ®S

o
o

*
o

NOLLY 134800



NOLLVYAdO SNONDIENV ¥OJ ALVINILSE TVNII 2¢ T¥NDIT

73
o

"0
"

)
<«

)
"
©

)
~

*»
Jr
o

"
4 "mg

-109 -




-110-

result. Note, however, that the estimate was obtained with a filter
which is not useful for multiple waveform environments. Figure 32
demonstrates the type of result the observer would obtain thinking

that only one waveform was present.

To illustrate the effect of bias in the estimates, one run was
made with no signals present and all detections were false. Table
VIII shows the number of false alarms and the correlation of the

final estimate with the initial.

TABLE VIII

Bias Effect of False Alarms

Systems 1 2 6 7
False Alarms 5 7 6 4
Correlation . 792 . 887 .920 .9014

The results of this short experiment show how little the estimate
has changed from its initial value even though only false detections
have occurred. It illustrates that a noise pattern similar to the

first estimate has been found.

The effects of bias can also be well illustrated by means of
Figures 33 and 34. Figure 33 shows the convergence of a filter
from an initial false estimate to S‘l . The relatively minor effects
of false alarms and incorrect identifications are evident. Note,

however, that the curve reaches a limit of approximately 0. 87.
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Figure 34 illustrates why this is so. It also shows the similarity

*
between the initial and final estimates particularly at s:o, s;, T
and s:. The estimate is made up primarily of detections which are

late by one interval. With this type of readout time, the limit of the

convergence would be approximately 0.93.

One other way of demonstrating the bias effect consists of
eliminating all previous explicit information. The elimination
was accomplished by replaéing the estimate completely by the most
recent detection. A run was made using the last detection as the
estimate. After approximately ten detections, filters 3 and 4 still
had a correlation of final and initial estimate of greater than 0. 5.

The other correlations were lower.

A few experiments were run where the same data were passed
through the filters a number of times with the estimate continually
increasing. In other words, the last estimate of one pass formed
the first estimate of the next pass. In all cases, very little effect
was noted other than the detection of pulses which had occurred
before the initial energy detection of the first pasa. There was

seldom any improvement in the estimate quality after the first trial.

One other result of moderate interest is the energy in the
estimate after a number of detections. Table IX shows the energy
in one set of estimates after 5 detections of signals with R = 0, 5,

10, 20.
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TABLE IX
R Estimate Energy
0 (false alarms) 329
5 3711
10 435
20 690

Not all of the detections are necessarily correct. Thus, by
measuring the estimate energy, the observer has not only an
indication of the signal energy, but also an indication of whether
the estimate might be due to false alarme only. On the basis of
the thresholds used for the linear system in the experiments the

minimum possible value of the estimate energy would be

( VI3 Z +4x2.33)% =200 . (97

Equation (97) assumes each detection is just at the threshold.
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VI. CONCLUSIONS

The experiments have demonstrated some of the capabilities
and limitations of automatic data processing. An examination of
the experiments and results provides an overall picture of the pos-
sibilities of adaptive filtering. It is apparent that the cross section
of filter structures studied operate moderately well at a signal-to-
noise ratio of 5. It is unfortunate that a lower threshold was not
chosen for Systems 3 and 4 in order to obtain a better assessment
of performance at low R. With lower thresholds, it is expected
that both would operate, but with lower detection rates than those
of Systems 41 and 2. Throughout the experiments, there is only
one situation where the first two structures show to advantage; that
of an initial false or poorly timed detection in a single waveform
environment. Here the larger decision region offered by these
filters explains the ability to correct for poor initial decisions.
The parabolic filter (System 6) can be used to some extent to com-
pensate for initial error. At low values of L the decision region is
large and decreases in size as { increases and, hopefully, the
estimate improves. One set of data did exhibit the phenomenon of
going from an initial false alarm to an estimate of Sn before the
filter structure became too narrow. System 6 has the advantage,
however, of being able to operate in this mode in a multiple signal
environment. Surprisingly, there are no apparent advantages in

using the first two systems in a single waveform environment
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other than to compensate for initial error. For large multiple
waveforms, the parabolic filters were obviously superior as should
be expected from Section II. In large signal cases where the initial
detections are very accurately timed, the narrow structure performed

very well.

The parallel processing of more than one estimate was very
successful for R = 20, utilizing parabolic filters. To more fully
investigate lower values of R, it would be necessary to provide
more samples of Sp and perhaps lower the filter thresholds
slightly. In any event, the automatic processing of the two wave-
forms produces results which could not be matched by any visual
techniques. (For example, see Figure 23 which is the beginning
of the data leading to Figures 28-30). There is no new difficulty
in now extending the processing to as many parallel filters as
desired. Each new one would be initiated if none of the established
filters detected a pulse during the interval that the energy exceeded
the threshold. It should also be noted that some criterion could be
used to prevent ambiguous detections (for example, t = 783,

Figure 28) after the initial detection of filter B. An added condition
for detection in filter B could then prevent some detections of Sa
and force the estimate of S, to be more reliable. In the paper, no

p

such restriction was used.
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The experiments were run with moderately high duty ratios
and a rather fortuitous choice of N. Each condition has an effect
upon the preceding arguments. If the pulses occur less frequently,
it would be necessary to lower the false alarm rate thus recucing
the probability of detection. More signal examples would then be
required to yield the same estimate qualities shown here. The
relative merits of the various filters would not change. A less
accurate choice of N does affect the relative merits. In dealing
with unknown data, the observer will generally choose N larger
than any waveform expected. As the estimate builds up, some of
the components will tend to zero, effectively reducing the dimension
of the estimate. But, if nothing else is done, the energy dimension
will remain at N and the energy component in Equation (77) will be
too large for accurate detection. If desired, the energy dimension
could also be reduced by determining the number of components con-
taining sorme fraction of the estimate energy and using it in
Equation (77). One advantage of an energy dimension larger than

signal dimension will be illustrated in Appendix B.

The one unexpected result of the experiments is the high
correct detection rate of the first two systems at R = 5. Figure 24
indicates that the detection rate for the matched filter is only 0. 46.
However, the value assumes detection only at the correct readout
time. There is also the possibility of the signal being detected at

a slightly different time while being missed at the correct time.
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Thus, it is possible for detection probabilities to be considerably
higher than the theoretical values. An examination of 190 signals
at R = 5 showed that the probability of detection with a matched
filter at the correct time was 0.46, but the overall detection
probability was 0.57. The fact that the signal may be detected at
several different times also tends to increase the curves of
Figure 21 for low values of cos §. As an example, consider the

detection of Su (Ra = 5} by threc linear filters with poor correlation.

a. Filter which examines each data sample independently

(S*= {1’0'....0})

Here cos 0 = . = 0.354
/T

8
and the probability of detection is 0.063.

There are now eightindependent points at which a true
detection can take place. The probability of missing all
eight samples is (1 - 0. 063)8 = 0.594

and the total probability of detection is 0. 406.

b. Filter which examines two successive samples
(s* = {4,4,0,--- -0}
Here cos 6 = 0.5
and the probability of detection is 0. 115.
There are now 4 independent measurements which could
produce correct detections.
The total probability of detection is
1-(1-0.115% = 0.387.

e e a ot s A o e
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c¢. Filter which examines four successive samples
(s* = {1,1,1, 1,0, -o})
Here cos 8 = 0.707
and the probability of detection is 0.233,
There are two independent measurements which could
produce detections. The total probability of detection is

1-(4-0.233)% = 0.412.

It should be noted that the total probability of detection is still
higher for Cases b and c than the values given. There are actually
more than four or two times at which detection can occur, but these
measurements are not independent of the others. Thus, it can be
seen that the filters can still have high detection probabilities with

poor estimeates.

The three cases discussed above correspond to estimates
which may be caused by poor initial readout time or peaks in the
estimate due to noise. An example of a poor initial estimate from

the experiments is given below in normalized form.

s* - {o.sz,o.za,o.u,o.oe,o.31,0.00,0.04.0.24, -0.16,0.27}

It is seen that most of the energy is concentrated in the first 3 terms
and most of it in the 0. 74 term. Although the estimate is poor, it
does allow future waveforms to be detected more reliably than

Figure 21 indicates, but with poor readout timing.
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It is of some interest to study the effects of re:noving the
restrictions on the problem imposed in the Introduction. For
instance, if it is known with certainty that only one waveform
exists either System 1 or 2 could be used to slight advantage.

The relaxation of the variable amplitude restriction offers no
particular advantage, but will be discussed from a different point
of view in Appendix A. If the waveforms are known, matched
filters are the optimum approach. However, there is still the
problem of determining the times to read the outputs of the filters
in the case of multiple signals. Appendix B will discuss the read-
out problem of multiple known signals. If the waveforms have a
fixed period, the detection and estimation process could be
improved. Errors can also be found and perhaps removed if
storage facilities are used. Figure 28 shows how the errors can
be determined. It is obvious from the figure that both S(1 and Sp
have a fixed repetition rate. The repetition intervals can be
determined easily by looking at the figure, or the determination
could be done automatically. The filter used is narrow and the
readout times are quite accurate. It is apparent that two -amplgl
of sa have been missed (t = 208, 258) and two samples of Sp
- have been missed (t = 183, 583). Without using the symbols given
in the figure, it is obvious that the ambiguous detection at t = 783

correctly belongs to the Sp system. If many pulses are available

to the observer, it may be possible to determine the period and use
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the information to lower the thresholds at future expected arrival
times. Very good estimates could be obtained because of the large
number of samples and the decrease in bias because of the thres-
hold reduction. Knowledge of readout time removes almost all of
the problems outlined previously. The only limitation of estimates
would be the number of signals available and the bias inherent in the
detection decision. If the observer removes the real time restric-
tion, a number of types of operation are possible. These include
new passes of the data through different parameter filters to
perhaps refine the estimates. The few experiments of this type

attempted gave no indication that the approach is useful, however.
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APPENDIX A AMPLITUDE FILTERS

A special application of the basic filter structure,
Equation (77), is presented here. In some of the discussion of
Section II, it was assumed that two identical waveforms of different
amplitudes represented entirely different signals. For example,
in Casge IV detection was based upon the given waveform falling
within a small range of amplitudes. This feature may be used to
advantage in separating pulses on the basis of amplitude. Waters
(13) has discuseed the separation of rectangular pulses in noise.
It will be noted from the discussion of Caee IV that the discrimina-
tion qualities of structures of the form of Equation (16) are

independent of wave shape.

To examine the separation characteristics, a
single test was run and the results are presented here because of
the assumption of known waveform and amplitudes. The computer
program previously described was modified to utilize a fixed,
known estimate. Since pulse shape was irrelevant, a rectangular
pulse was used for convenience. The input included four signals
of ten interval length and R = 20, 80, 480, and 320. The noise

again had unit variance and zero mean. The hypothesis H, thata

i
signal of amplitude Ai is present is chosen if

* 2

) < A

N A
Z (v -
m=1 ™

- M2
e



*
N 2 N Vo ®m 2
T v.o-24 2 m +AS< A
m=1 m ms=14 N *2
z LI
m=1
or
*
N Vi ®m N 2
2A, - X v >Ai - A . {(A-1)

Detection is based upon the error energy being less than a specified

level.

No attempt was made to optimize (in any sense) the
filter performance. The threshold value was selected by noting that

if the hypothesis is correct

A.s*
v = —1_ 4 h
m N*Z m
Eam
1
)
N A s
E{z(v - im)}=N¢2=10 , (A-2)
m=1 ™ /N 2
e

(A-3)
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With the values of Ai used, the minimum value of Equation (A-3) is
30. A threshold of A= 15 was chosen to provide fairly good separa-

tion characteristics.

Table A-I gives the results of the experiment and a
comparison with the ideal performance of matched filters with dual
thresholds.

TABLE A-l

Detection Characteristice of Amplitude Filters

Input Amplitude J20 2/20 3 /20 420 o
Number of Signals 10 10 5 4
Error Energy Criterion

Detections of /20 Filter 9 6

Detections of 2 20 Filter 1 9

Detections of 3 /20 Filter 2 4

Detections of 4 /20 Filter 4
Matched Filter

Detections of /20 Filter 9 3

Detections of 2 /20 Filter 1 10
Detections of 3 /20 Filter 5
Detections of 4 /20 Filter 4
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The matched filter results are based upon thresholds spaced

equidistant between the expected outputs from the five possible

signals (A, = J20, 2 V20, 3 V20, 4 /20 and 0).

The results show rather poor performance at the’
lowest level because of numerous false alarms, but good charac-
teristices at other amplitudes. The fact that one signal was detected
simultaneously by two filters demonstrates that the threshold chosen
does not lead to mutually exclusive decision regions. The threshold
could be modified to provide exclusive decision regions or slightly

better overall performance.

The filter of Equation(A-1) possesses certain
advantages over other types of amplitude filters. It operates
equally well for all pulse shapes and does not require the use of
dual thresholds. The system described a}so inherently discrimi-

nates against other waveforms which may be present.
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APPENDIX B AUTOMATIC RECOGNITION OF HAND SENT

MORSE CODE CHARACTERS

The automatic detection of Morse code signals
represents an interesting application of adaptive filtering techniques
(5). In hand sent messages the character lengths may vary con-
siderably with time and variable processing could be used to track
these changes. There is one difficulty in using the filter previously
discussed in the decoding operation. Generally, the problem is that
of separating two waveforms where one waveform is identical to a
portion of the other. Figure B-4 illustrates the difficulties in
deciding which of two waveforms, SK or SR’ is present. Unless
special precautions are taken, a filter which detects SK will also
detect SR' The precautions necessary may be determined by
referring to Figures B-4(b, c) which show the paths of SR and SK
through the signal space as a function of time. The coordinates

represent the last three samples observed with the most recent

*
3

* *
If the SK decision region is chosen in either the s, or the 8,

*
sample in the s, direction and the oldest sample in the 8, direction.

direction, S_, would be detected properly. However, the filter

K

would also detect SR at tp + 4 or at tg Notice that if the observer
*

places a parabolic decision region in the s, direction (Figure B-1(d)),

SR will be discriminated against because its path through the space

does not enter the region.
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The equation for the filter boundary may be written

2

2
V-s;= a{(V-s:) +(V'a;) } + A

2 2 2 2
= a{(v-s’:) +(V-s;) +(v-.’;) -(v.,’;)

b+

2
_ 2, 2,2 *
—a.{v1 +v +v3 -(V sz)}+A

2
3 v s* 3 2 3 vmar: 2
z ___m m =a{ T v -(E —-"""'—")}+A
m=1 /3 2 m=4 ™ m=1 /3 2
Zs zZ s
g m 1 ™

where

s ¥ = {0.1,0}

The form of the filter is identical to Equation (77).
Now, howeve=r, the dimension of the energy measure is larger than
the signal dimmension in order to examine each side of the pulse for
zero compon ents (or small components if noise is present). The
values of a &and A may be selected such that only a signal of unit

duration will be detected. The filter for detecting S_ would be a

R
parabolic reggion in the {1, 1, i} direction. In this case, the
energy meas ure and the signal have the same dimension so any

rectangular poulse of more than three interval duration would be

B
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detected as SR’ The addition of two more dimensions to the energy
measure would provide a filter structure which could discriminate

against longer pulses.

On the basisofthe above discussion, a few experiments
were performed using sampled, hand sent, Morse code as the input
to the double filter system described in the paper. The space infor-
mation was removed by placing the character pulses at fixed
intervals of time. During the transmission the dot lengths varied
between one and five intervals and the dashes between four and ten

intervals. Initial estimates of the characters were used with

1

1 1
VARV BEVE)

dot estimate = {0, 0,0,

dash estimate ={%-. %-. s}.s}. ;—. %-, %—.%'o ;'. 0}

Trials were made with three choices of a and A. The results
showed error rates of 7-8% in the character identification. Error
rates of about 4% would have b=en obtained with slightly different
parameter chcices because half of the errors were due to a failure
in detecting unit interval length pulses which are obviously dots.
The filters followed the operator characteristics quite well,

correctly detecting early dots of length five and later dashes of

length four.
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Final estimates were of the form
dot estimate = {o,o, .03, .68, .68, .27, 0,0,0,0}
dash estimate = {.41, .41, .41, .44, .39, .33, .20, .40, .05, o}

One last trial was made with noise also present. The
noise was of sufficient amplitude to prevent the measurement of pulse
width by determining the interval that the threshold was exceeded.
The filters missed about 35% of the pulses but incorrectly identified
only 5%.

From the discussion and the experimental results,
it is apparent that the basic filter structure can be used to separate
pulses on the basis of pulse width, even in the presence of noise.

The importance of extra dimensions in the detection of similar wave-
forms was also demonstrated but it leads to more missed signal
errors. The filter also demonstrated the ability to track slowly

varying patterns in a real situation.



-134-
REFERENCES

Minsky, M., "Steps Toward Artificial Intelligence, " Proc.
IRE, Vol. 49, No. 1, pp. 8-30, January 1961.

Glaser, E. M., "Signal Detection by Adaptive Filters, " The
Johns Hopkins University, Radiation Laboratory, Technical
Report No. AF-75, April 1960.

Jakowatz, C. V., Shuey, R. L., and White, G. M.,
"Adaptive Waveform Recognition, " General Electric Research

Laboratory, Schenectady, New York, 60-RL-2435E, May 1960.

Braverman, D. J., "Machine Learning and Automatic
Pattern Recognition," Stanford Electronics Laboratory,
Stanford, California, Technical Report No. 2003-1,

February 417, 1961.

Gold, B., "Machine Recognition of Hand-Sent Morse Code, "

Trans. IRE, Prof. Group on Iuformation Theory, Vol. IT-5,

No. 4, pp. 17-24, March 1959.

Turner, R. D., "The Generalized Search Process, " Second
Scientific Report, Operations Research on Recognition, ASCRL,
AF (604)-6103, General Electric Advanced Electronics Center,

Ithaca, New York, November 1961.



10.

11.

12.

-132-

Brennan, E. J., "An Analysis of the Adaptive Filter, "
General Electric Electronics Laboratory, Syracuse, New

York, R61ELS-20, 1961.

Brennan, E. J., "Adaptive Filter Simulation Study,” General
Electric Electronics Laboratory, Syracuse, New York,

R61ELS-114, September 22, 1962.

Middleton, D., "The Effects of Variable Amounts of Prior
Information on Detection and Discrimination of Partially
Known Signals," The Johns Hopkins Univers‘ity, Radiation
Laboratory, Internal Memorandum, RL/62/IMA-4, May 17,
1962.

Ogg, F. C., "The Use of Prior Information in Signal
Detection, " The Johns Hopkins University, Radiation
Laboratory, Internal Memorandum, RL/61/IMA-20, October

31, 1964.

Helstrom, C. W., Statistical Theory of Signal Detection,

Pergamon Press, New York, 1960.

Roe, G. M., and White, G. M., "Probability Density Functions
for Correlators with Noisy Reference Signals," Trans. IRE,

Prof. Group on Information Theory, Vol. IT-7, No. 1, pp.

13-18, January 1961.



-133-

13. Waters, W. M., "Pulse Separation by Amplitude Filters, "
The Johns Hopkins University, Radiation Laboratory,

Technical Report No. AF-77, May 1960.



10

- e B IV S ek B b L bR e e M e A b

e e U e e e ek b

-

»

Defenee Document Center
Arlington Hall Station
Arlington 12, Virginla

ASD
Wright -Patterson AFB, Ohio
Attn: ASAPRL
ASAPT
ASNC
ASND
ASNG
ASNPVD-{
ASNPYD-2
ASNR
ASNS
ASNSED
ASNY
ASORR (Mr. Catansarite)
ASRC
ASRE
ASRNET -3
ASRNGE
ASRNOO
ASRNC (Mr. Stimmel)
ASRNC (Mr. Portune)
ASRNCC -4
ASRNCC -2
ASRNET -4
ASRNCF -4
ASRNRS
ASRNRS -3
ASROO
ASRSSE -2
AS0Q (Gp. Capt. Fletcher)

ARL
Wright -Patterson AFB, Ohio
Attn: ARM (Mr. Wolaver)

RADC

Griffiss AFB, New York

Attn: RAAL
RAD (Dr. 1. J. Gabelman)
RALC (J. E. Gruickshank}
RALSS (M. A. Disd)
RAUAA (John P. Huss)
RAUAT

RAUMA (C. R. Miller)

RAUMM

AFSC
Andrews AFB
Washington 25, D.C.
Attn: S8CTAN
8CRC {Lt. Col. Thompeon}

HQ, uUsar

Washington 25, D.C

Attn: AFRDR-IN {1&.Col. Pinson)
AFOOR-8V-ES {Lt. Col. Smith)
AFORQ-SA (Lt. Col. Ragsdals)
AFMPP-EQ (Lt. Col. Manbeck)
ATORQ-AD

USAFSS (ODC-R)
8an Antonio, Texas

RTD (RTHR, Col. Schulte)
Bolling AFB,

Washington, D.C.

PACAF (PFOOT-D)

APO 933

San Francisco, California
USAFE (DCS/Ops)

AFPO 633 Or

New York, New York

35 35th NTW
Attn: Electronic Warfare Familiarisation

Course
Mather AFB, Calif.

TAC (OA)
Langley AFB, Va.

DCAS ( DCLMT/TDC)
AF Unit Post Office
Los Angeles 43, Calif.

-

10

-

ELECTRONICS DISTRIBUTION

SAC

Offutt AFB, Nebr.

Attn: DORQP
DOPLT

AFMDC (MDRRF -1)
Holloman AFB, N.M.

Air University Library {AUL-6234)
Maxwell AFB, Ala.

9th AF {(DOTR -FR (Capt. O. E. McCain)
Shaw AFB, §. C.

ADC (ADOOA)
Ent AFB, Colorado

Director

Weapons Systems Evaluation Group
Room 1F.-875, The Pentagon
Washington 25, D.C.

Scientific and Technical Information Facilit:
Attn: NASA Representative {Code: 8 -AK/DL)
P. O. Box 5700

Betheada, Md.

Commanding Officer
U.S. Army Signal Res. and Dev. Lab.
Attn: SIGRA/SL-SE, Mr. 1. O. Myera
Fort Monmouth, N.J.

Chief Signal Officer

Research and Development Div.
Avionics and Surveillance Branch
Washington 25, D.C.

Assistant Secretary of Defenne
Research and Development Board
Attn: Technical Library
Department of Defense
Washington 25, D.C.

Director

National Security Agency
Attn: C3/TDL

Fort George G. Meade, Md.

Army Ordnance Missile Command
Attn: ORDXM -RR, Hallowes, Jr.
Redstone Arsenal, Alabama

Commanding General

Army Ordnance Missile Command

Attn: AMSMI/RNR - Re-entry Physice Branch
Redstone Arsenal, Alabama

Commanding Officer
U.S. Army Signal Res. and Dev. Lab.
Attn: SIGRA/SL-N-5, Dr. H. Bennett
Fort Monmouth, N.J.

Commanding General
White Sands Missile Range
Attn: ORDBS-OM-TL

New Mexico

Commanding Officer

Picatinny Arsenal

Attn: Tech. Information Section
ORDBB -VAb

Dover, N.J.

USA Signal Electronic Research Unit
P.O. x 208
Mountain View, Calif.

us Arm Signal Corps School
Attn: T, USASCS (Mr. Henry Allem)
Fort Monmouth, N.J.

Chief of Naval Research
Atta: Ccde 427
Department of the Navy
Waehington 25, D.C

Commander

U.S. Naval Ordnance Laboratory
Attn: Eva Liberman, Librarian
Whits Oak, Silver Spring, Md.

Director

Material Laboratory
New York Naval Shipyard
Brooklyn 1, N. Y.

Commander

U.S. Naval Missile Contor

Atta: Technical Library,
Code NO 3022

Point Mugu, California

Commanding Officer

U.8. Naval Air Dev. Center
Engineering Development Lab.
Attn: J. M. McGlone
Johnaville, Pa.

Commanding Officer

U. 8. Naval Ordnance Laboratory
Attn: Cade 74

Corona, California

Chief

Bureau of Naval Weapons
Department of the Navy
Attn: RRRE.2
Washingten 28, D.C.

Director

U. 8. Naval Research Lab.
Atta: Code 2027
Washington 28, D.C.

Chief, Bureau of Ships
Al Code 338

Room 1532, Main Navy Buildi
18th and Constitetion Ave., N. W.
Washington 25, D.C.

Airborne Instruments Lab.

A Division.of Cutler -Hammer Inc.
Atta: Library

Walt Whitman Road

Melville, Long leland, N. Y.

Analytic Services, Inc.
Atta: Library

1150 Leesburg Pike
Bailey's Croseroads, Va.

The Johne Hophine Univerelty
Applied Pha-lu Laboratory
Attn: Mr. George L. Seielstad
8621 Georgla Avenue

Stlver Spring, Md.

Bjorketea Research Labs., Inc.
P. O. Box 265

oon 4, Wisconsin

Electreaic Communications, Iac.
Ressarch Division

1830 York Road

Timonium, Md.

General mice/Fort Worth

A Div. of ral Dysamice Corp.
Atta: Chief Librarian N "
P. O. Box 48

Fort Worth 4, Temas

General Electric
Advanced Electronics Conter
Aum: Libra

ry
Cotnell University Indust . Park
Ithacs, N. ¥, v risl Ree. Pu

Gremman Alrcraft .
Exgincoring Libraty Piam 3® =7
Ann: M.0. Friediander, Head Libearian
Bethpage, Loag loland, .Y,

The Hallicrafters Company

Atta: Library

4401 Went Fifth Avenne

Chicage 24, Mlinele

Science Park Bon 40
State Colioge, Py.

The University of unur-
Institute of Sei
once and Technology

P. O. Box 648
Asa Arber, Michigan



ELECTRONICS DISTRIBUTION {CONTD)

ITT Federal Laboratories

Div. International Telephon: anc
Telegraph Corp.

500 Washington Avernue

Nutley, N.J.

Jansky and Bailey

A Div. of Atlantic Research Corg.
1339 Wisconsin Ave., N. W,
Washington 7, D.C.

Massachusetts Institute of Technclogy

Lincoln Laboratory
Attn: Library
P. O. Box **
Lexington 73, Mass.

Ma ssachusetts Institute of “'echno ogy \

Electronice Systems Labor:to ry
Attn: John E. Ward, Rm. 72-401
Cambridge 39, Mass.

Lockheed Geergla Company
Attn: Dept. 72-15
Marietta, Ga.

Martin-Marietta Corp.

Martin Company Division

Attn: Science-Technology l.ibra ry
Baltimore 3, Md.

Mitre Corporation
Attn: Library
Bedford, Mass.

Motorola Inc.

Syetems Research Lab.
3330 Indiana Avenue
liverside, Calif.

Porth American Aviation, ‘nc.
A:tn: Technical Library
Irternational Alrport

Lus Angeles 9, California

Ner hrop Corporation

No a1 Division

Attv. Technical Information, 392<-34
1001 E. Broadway

Hawiorne, Calif.

Radi> Crrporation of Ame: ica
Defe:.2¢ Electronic Products, DSD
Attn: L. R. Hund, Librarian
8500 Eaiboa Blvd.

Van Maye, Calif.

Rayth an Company
Attn: . brarian
P.O. ilox $36

Santa tarbara, Calif

Revere { opper and Brass (nc.
Foil Division

Attn: Mr Arthur Ferretti
196 Diaryond Street

Brookliy: ¢2. N. Y.

Stanford Jriversity
Stanford Z'ectronics Labs
Attn: Sec ity Officer
Stanford, Celif.

Sylvanis Elactric Products Inc.
Technical information Section
P. O. Box 183

Mowntaln V. ew, Calif.

Sylvania Electric Products, Inc.
Sylvania Electronic Systemns

Atta: Applied Research Lab. Library
40 Sylvan Roud

Waltham 34, Mass.

The Ohio Stat: University
Research Foundation
Attn: Dr. Cutt 4 Lewie
1314 Kinnear .lond
Columbue 12, Dhio

The RAND Corroration
Atta: Library

1700 Main Stroet

Santa Monica, Calif.

-

The Univarsit
Univarsity R, 1o Michigen

efe,
Attn: Dr. B, r.nch"::‘curlty Office

Ba
Director,
P. 0. Box 622 ‘EL
Ann Arbor, Mlchl‘“

Thompseon R« aa .y
L e
Attn: Technical Lits

8433 Fallbrook o, %Y

Canoga Pash, Ci/2 e

Space Technolo,

STL Technical L),->2%" + In¢

Attn: Do t

One Splt‘;ugl::k Acquisitions Group

Redondo Beach, Cabif.

Unidynamice

Div. of Universy,

Attn: Technizal t‘b‘m"h Corp.
4407 Canl Avpny*? FATY

St. Louis, Misuq,,;

Westinghouse i s
Defense <enter ‘cte-ic Corporation

o ‘Baltimore
ttn: Te-:
3."(‘). 'l':n!u;l:;’l Wo rimation Ceuter

Baltimo e 3,

Ma tylamnd



